Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
EClinicalMedicine ; 51: 101542, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1914318

ABSTRACT

Background: There is no evidence to date on immunogenic response among individuals who participated in clinical trials of COVID-19 experimental vaccines redirected to standard national vaccination regimens. Methods: This multicentre, prospective controlled cohort study included subjects who received a COVID-19 experimental vaccine (CVnCoV)(test group, TG) - and unvaccinated subjects (control group, CG), selected among individuals to be vaccinated according to the Spanish vaccination program. All study subjects received BNT162b2 as a standard national vaccination schedule, except 8 (from CG) who received mRNA-1273 and were excluded from immunogenicity analyses. Anti-RBD antibodies level and neutralising titres (NT50) against G614, Beta, Mu, Delta and Omicron variants were analysed. Reactogenicity was also assessed. Findings: 130 participants (TG:92; CG:38) completed standard vaccination. In TG, median (IQR) of anti-RBD antibodies after first BNT162b2 dose were 10740·0 BAU/mL (4466·0-12500) compared to 29·8 BAU/mL (14·5-47·8) in CG (p <0·0001). Median NT50 (IQR) of G614 was 2674·0 (1865·0-3997·0) in TG and 63·0 (16·0-123·1) in CG (p <0·0001). After second BNT162b2 dose, anti-RBD levels increased to ≥12500 BAU/mL (11625·0-12500) in TG compared to 1859·0 BAU/mL (915·4-3820·0) in CG (p <0·0001). NT50 was 2626·5 (1756·0-5472·0) and 850·4 (525·1-1608·0), respectively (p <0·0001). Variant-specific (Beta, Mu, Omicron) response was also assessed. Most frequent adverse reactions were headache, myalgia, and local pain. No severe AEs were reported. Interpretation: Heterologous BNT162b2 as third and fourth doses in previously suboptimal immunized individuals elicit stronger immune response than that obtained with two doses of BNT162b2. This apparent benefit was also observed in variant-specific response. No safety concerns arose. Funding: Partly funded by the Institute of Health Carlos-III and COVID-19 Fund, co-financed by the European Regional Development Fund (FEDER) "A way to make Europe".

2.
Int J Environ Res Public Health ; 17(22)2020 11 17.
Article in English | MEDLINE | ID: covidwho-927674

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19) is a novel coronavirus not previously recognized in humans until late 2019. On 31 December 2019, a cluster of cases of pneumonia of unspecified etiology was reported to the World Health Organization in China. The availability of adequate SARS-CoV-2 drugs is also limited, and the efficacy and safety of these drugs for COVID-2019 pneumonia patients need to be assessed by further clinical trials. For these reasons, there is a need for other strategies against COVID-19 that are capable of prevention and treatment. Physical exercise has proven to be an effective therapy for most chronic diseases and microbial infections with preventive/therapeutic benefits, considering that exercise involves primary immunological mediators and/or anti-inflammatory properties. This review aimed to provide an insight into how the implementation of a physical exercise program against COVID-19 may be a useful complementary tool for prevention, which can also enhance recovery, improve quality of life, and provide immune protection against SARS-CoV-2 virus infection in the long term. In summary, physical exercise training exerts immunomodulatory effects, controls the viral gateway, modulates inflammation, stimulates nitric oxide synthesis pathways, and establishes control over oxidative stress.


Subject(s)
Coronavirus Infections/prevention & control , Exercise , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus , COVID-19 , China , Humans , Inflammation , Nitric Oxide , Oxidative Stress , Quality of Life , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL